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Assessment of the Accuracy of Representing
a Helical Vortex by Straight Segments

D. H. Wood¤ and D. Li†

University of Newcastle, Callaghan,New South Wales 2308, Australia

The accuracy of representing a helical vortex, as found in the wakes of helicopters, wind turbines, and propellers,
by a sequence of straight segments is considered. The accuracy is assessed by comparison with recent results for
the induced velocity of a helix of constant pitch and radius. This comparison is motivated by the small values of the
vortex pitch behind wind turbines and hovering rotors; small pitch leads to errors associated with the proximity of
subsequent turns of the helix to the control point at which the velocity is required. Three cases are considered. The
� rst, the velocity on the helix axis, has an analytic solution, which is used to demonstrate that the general accuracy
of the straight segment approximationis second order, as has been found in previous comparisonswith the velocity
� eld of a vortex ring. For the second case, where the control point has the same radius as the vortex, the segments
aligned with the control point are mainly responsible for the error. The error varies from � rst to third order as the
number of segments per revolution of the helix is increased. Third, the self-induced velocity is determined to within
an accuracy comparable with the effects of the vortex structure, of which little is presently known in general. The
effects of vortex curvature are not signi� cant and easily dealt with.

Nomenclature
a = vortex core radius
L = length of vortex segment
M = number of straight segments

per revolution of the helix
N = number of helical vortices
p = vortex pitch
R = helix radius
r = distance
U = x direction velocity
Ub = binormal velocity
W = z direction velocity
W.p/ = integral in Eq. (1); typical values in Table 1
W.®; p/ = integral in Eq. (1); typical values in Table 1
x; y; z = coordinate directions de� ned in Fig. 1
® = azimuthal displacement of vortex
0 = circulation in vortex
1 = error; Eq. (6)
" = cutoff parameter
µ = vortex angle

Subscripts

a = start of vortex segment
b = end of vortex segment
p = control point
s = value for vortex segment

Introduction

I T is common for the helical vortices in the wakes of propellers,
rotors, and wind turbines to be representedcomputationallyby a

sequenceof straight vortex segments, e.g., Refs. 1– 6. This approxi-
mation is shown schematicallyin Fig. 1 for one revolutionof a helix
of constantdiameter and pitch. The number of segments per revolu-
tion is M , which will be treated as an integer; M D 6 in Fig. 1. The
straight segment approximation is computationally simple and is
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easily incorporated into methods that iterate to achieve a free-wake
geometry,e.g., Ref. 5. The accuracyof the approximation,however,
has been tested thoroughly only for the known velocity � eld of a
vortex ring, e.g., Refs. 2, 5, and 6. It is shown in those referencesthat
straightsegmentshave an error proportionalto M¡2 . In otherwords,
the approximationhas the same order of accuracy as the trapezoidal
rule applied to the original Biot–Savart integral. Testing has been
limited to vortex rings partly because the velocity � eld of helical
vortices is considerably more complex, even when the vortices are
doubly in� nite and have constant pitch and diameter.7¡10 It is only
recently that the full expression for the self-induced velocity of a
helical vortex has been found by Boersma and Wood.11 Wood and
Boersma12 extended the analysis to include the motion of N iden-
tical vortices with a common axis, each azimuthally displaced by
2¼=N . This situationmodels the vortices trailing from an N -bladed
rotor. Reference 12 considered N D 2; 3, and 4.

Testing against helices rather than rings is necessary because of
the small values of the vortex pitch p in the wakes of rotors and
wind turbines; Ref. 12 demonstrates that p, when normalized by
R, as are all lengths in this paper, is typically about 0.05 for wind
turbines operating at maximum ef� ciency, and Leishman et al.13

measured p D 0:053 behind their hovering rotor. The helix in Fig. 1
has p D 0:05. The � gure also shows the three test cases that will be
considered: the control point for case 1 is on the centerline at the
start of the vortex,for case 2 it shares the helix radiusbut is displaced
axially by p=2 from the nearest point on the helix, and case 3 is the
self-induced velocity. Figure 2 shows the integrand for the Biot–
Savart law for case 2 for a rangeof p and for a vortex ring coinciding
with the helix at y D ¡1. The vortex angle µ is measured from the
positive y axis in Fig. 1 in the direction of the helix. For small p
the rapid change in the integrand and the large maxima near µ D ¼
in Fig. 2 will obviously cause problems for any numerical method.
This behavior,which is repeatedwith diminishingsigni� canceevery
additional 2¼ , is caused by the proximityof the subsequent turns of
the helix and does not occur for a vortex ring. In other words, the
integrands in Fig. 2 emphasize that the vortex ring is not a special
case of a helix at small p. The two peaks in the helix integrandsare
displaced from ¼ by µ 0 ¼ §

p
.2/¼ p. It is reasonable, therefore, to

require that M À
p

.2/=p for adequate representation near µ D ¼ .
For p D 0:05 this translates to M À 28. Furthermore, the integrand
is zero at µ D ¼ , which suggests the need for M to be even for case 2.
It will be shown that the largest contribution to the error for cases 2
and 3 comes from the segments aligned with the control points.
These begin or end at µ D .2l ¡ 1/¼ for any positive integer l.

Expression (5.7) of Ref. 12 gives the binormal velocity Ub nor-
malizedby 0=.4¼ R/, where 0 is the circulation(as are all velocities
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Fig.1 Representation of helical vor-
tex by straight segments.

Fig. 2 Integrand in Eq. (1) for case 2.

in this paper), for any one of N identical vortices. Rearrangement
gives
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where the summed terms are caused by the other N ¡ 1 vortices and
the remaining terms are the self-induced contribution.The integral
W .®; p/ is de� ned by Eq. (2.10) of Ref. 12 and W .p/ by Eq. (4.1)
of Ref. 11. The last two underlined terms are the curvature terms,
where " D a=.1 C p2/. They arise from the Moore–Saffman proce-
dure of treating the singularityin the Biot–Savart law for any curved
vortex by subtracting the effects of the osculating circular vortex,
whose velocity is well known (see Saffman14). The osculating vor-
tex used in deriving Eq. (1) has a circular core containing evenly
distributed vorticity. Ricca9 discusses in detail the application of
the Moore–Saffman procedure for helical vortices. Reference 11
shows that the � nal term 1

4
would become zero if the vortex were a

line vortex, whereas the logarithmic term would be unaltered.Thus
we can anticipate that the structure of the core of a helical vortex
contributes to its binormal velocity an amount of order 1

4 at small
pitch.

Neither W .p/ nor W .®; p/ have, apparently,an analyticsolution.
Their asymptoticbehaviorwas analyzedby Refs. 11 and 12, respec-
tively.The latter show that, fromEq. (1), Ub ! N=p as p # 0 for any
N ¸ 1, showing again that the limiting case of a helix at small pitch
is not a vortex ring. If we take representativevalues of p D 0:05 and

" D 0:032 fromRef. 13, then N=p ¸ 20 and log " D ¡3:4, so that the
curvature term, which dominates the self-inducedvelocity of a vor-
tex ring, is of secondary importance to a helix of suf� ciently small
pitch, as might be expected from a comparison of the integrands
in Fig. 2. Furthermore, the curvature term tends to be cancelled by
the higher-orderpitch terms. It is clear, therefore, that there are suf-
� cient differences between the motion of vortex rings and helices
of small pitch to require the use of the latter in assessing the accu-
racy of the straight segment approximation.That is the aim of this
work. The three test cases are described in more detail in the next
section. This is followed by the results of the comparison and the
conclusions.

Test Cases
Figure 1 shows the three test cases for a singly in� nite helix of

constant p and R beginningat (x; y; z/ D .0; 1; 0/. In practice, this
means that the blade shedding the helical tip vortex lies along the
positive y axisendingat (0, 1,0).The coordinatesof thecontrolpoint
for the � rst case are .x p; yp; z p/ D .0; 0; 0/. It is the only case with
an exactsolutionU D p¡1, which is easilyobtainablefrom theBiot–
Savart law. This allows, for control points well away from the helix,
thedeterminationof theorderof the straightsegmentapproximation,
which is not equivalent to any simple quadrature scheme on the
original Biot–Savart integral. For case 1 the integrand decreases
monotonically with µ or x .

The coordinates for case 2 .x p; yp ; z p/ D .0; ¡1; 0/ would cor-
respond to the tip of a second blade of a two- or four-bladed rotor
or turbine. This gives rise to the essential dif� culty shown in Fig. 2
without the complication of the curvature singularity for the self-
induced velocity in case 3. Furthermore, cases 2 and 3 are well
suited for comparison with the results of Ref. 12 who analyzed
doubly in� nite vortices, that is, vortices that also extend in� nitely
in the negative x direction. For cases 2 and 3 we calculate the bi-
normal velocity Ub . The Biot–Savart law for case 2 can be written
as

Ub D 1

.p2 C 1/
1
2

Z 1

0

¡p2µ sin µ C .1 ¡ p2/.1 C cos µ/

[p2µ 2 C 2.1 C cosµ /]
3
2

dµ

D . p2 C 1/
1
2 W .¼; p/

2
¡ p.p2 C 1/¡1

2 (2)

from Eq. (1) when N D 2 and considering the contribution from
j D 1. (Alternatively, if N D 4, j D 2.) The integrand is shown in
Fig. 2 for a range of p, and the values of W .¼; p/ in Table 1 are
taken from Table 1 of Ref. 12, which also gives W . p/. These val-
ues were obtained numerically and were checked by Refs. 11 and
12 against the asymptotic expansions of W .p/ and W .®; p/ for
small (and large) p. At p D 0:05 the numerical results agreed with
the asymptotic expansion to the six signi� cant � gures shown in
Table 1. Because the numerical quadrature should increase in dif-
� culty as p # 0 (Fig. 2), it follows that the numerical results in
Table 1 are accurate to six signi� cant � gures for all values of p.
Based on the error analyses in Refs. 11 and 12 for the numer-
ical calculations, the agreement with the asymptotic expansions
has been extended to at least 10 signi� cant � gures for W .p/ and
W .®; p/ at p D 0:05. This work has not been reported; six signif-
icant � gures are used here for consistency with Refs. 11 and 12.
Furthermore, six � gures corresponds to single precision on most
computersand is easilysuf� cient to allow themain conclusionsto be
drawn.

Table 1 W(¼; p) and W( p) to six signi� cant � gures

Pitch p W .¼; p/ W . p/ Ub for case 2 Ub for case 3

0.01 99.3069 95.7022 49.6459 48.1901
0.05 19.3086 17.3173 9.61642 8.96711
0.1 9.31407 8.01822 4.58076 4.28018
0.5 1.53777 1.34138 0.412426 0.735271
1.0 0.790427 0.456367 ¡0.148190 0.202238
5.0 0.190702 0.0711198 ¡0.494384 ¡0.0189082
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Fig. 3 Notation for Eq. (4) with the control
point for case 1. The vortex segment begins
at a, ends at b, and has length L.

For case 3 .xp; yp; z p/ D .0; 1; 0/, which is the start of the vortex.
The Biot–Savart law gives
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from Eq. (1). The change in the lower limit of the Biot–Savart in-
tegral from zero to " embodies the cutoff method, which Saffman14

shows to be equivalent to the Moore–Saffman procedure for
force-free vortices of the same core structure. W .p/ is given in
Table 1. Ub is related to the x- and z-direction velocities U and W
by

Ub D
U § pW

. p2 C 1/
1
2

(4)

where pW is added for case 2 and subtracted for case 3. For the
straight-segment approximation U and W were found as the sum
of the contribution from each segment Us and Ws , for which the
formulas are
µ
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¶
D 2
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£
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¤

£
µ
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¶
(5)

as givenbyEq. (2)ofAfjehandKeith.1 The subscriptsa andb denote
the beginningand end of each segment and the lengthsra , rb , and L
are de� ned in Fig. 3. All of the calculationswere to 16 signi� cant � g-
ures (double precision). The segments � nished at a value of x deter-
mined as describedin Section4 of Ref. 11, and the remainingcontri-
bution to the in� nite integral,the so-called“analyticremainder,” was
approximated by the � rst method of Wood and Meyer.15 In no case
did the analytic remainder contribute signi� cantly to the integral.

Results
Figure 4 shows the errors for case 1 as a functionof p and M . The

error is the differencebetween the sum of the contributionsfrom the
vortexsegmentsplus the analyticremainderand the exact result.For
convenience, Figs. 4–6 show the absolute value of the error. It can
be shown that the error for the � rst vortex segment [beginningat (0,
1, 0)] is approximately2¼ 3=.3M3/, and the calculationsagree with
this value. As µ increases, the error changes sign and becomes de-
pendenton M¡2 , which presumablyleads to the generalM¡2 depen-
denceof the (positive) global error shown in Fig. 4. This dependence
was also found by Refs. 2, 5, and 6 in their vortex ring comparisons.

The error for case 2 for small pitch, shown in Fig. 5a, is quite
different from that in Fig. 4, even taking into account the six-� gure
accuracy of Table 1, which means, for example, that the large-M
results for p D 0:05 and 0.1 cannot be trusted. For all values of p,

Fig. 4 Absolute error for case 1.

a) Small pitch

b) Large pitch

Fig. 5 Absolute error for case 2.
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a) Small pitch

b) Large pitch

Fig. 6 Absolute error for case 3.

the errors before the minimum absolute error are negative, and all
those afterward are positive.

At small p the error can be estimated from the following simple
analysis. All vortex segments aligned with the control point have
either ya or yb D ¡1 and give Us D 0 by Eq. (5). This is because the
velocity inducedat a point by a straight vortex segment is normal to
the plane containing the point and the segment. Ws is more dif� cult
to analyze, but Ws for the segment ending at .2l ¡ 1/¼ , where l is
a positive integer, tends to cancel that for the segment immediately
following. (The cancellation is exact when p D 0.) Furthermore,
Ws is multiplied by p in Eq. (4), so that it can be assumed that
the contribution to the binormal velocity is zero from the aligned
segments. Now the integrand in Eq. (2) is zero if µ D .2l ¡ 1/¼
for any positive integer l, so we can use the trapezoidal rule to
estimate the error caused by the zero contribution from the two
aligned segments for each l. To the accuracy of the trapezoidal
rule, this error does not depend on the sin µ term in Eq. (2). The
approximate error is

¡1
2 .1 C p2/

1
2 .2¼=M/3f[.2l ¡ 1/¼p]2 C .2¼=M /2g¡ 3

2

Summing over all l, and then approximatingthe sum by an integral,
gives the global error 1 as
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The absolute value of Eq. (6) is shown in Fig. 5a for the three low-
est p. Equation (6) underestimates the error by a factor of about
two, but the sign and trend of the actual error with increasing M
are accurately re� ected by the simple formula. The straight seg-
ment approximation is, therefore, only � rst-order accurate at small
M , approximately M < 30 for p D 0:05, improving to third order
at much larger M . Neither of these results is obtainable from com-
parison with the velocity � eld of a vortex ring. Because the error
appears to be dominatedby the aligned segments, it follows that the
test cases involving a helix of constant diameter and pitch are likely
to be the severest possible. It can be shown empirically that the ratio
of the actual error to 1 scales on the product pM at small pitch, at
least until pM ¼ 5. The analysis leading to Eq. (6) is only valid at
small p, and so it is not surprisingthat the form of the error changes
markedly as p increases (Fig. 5b).

Figure 6 shows the results for case 3, for which the Biot–
Savart integrand in Eq. (3) behaves as µ ¡1 as µ ! 0, giving rise
to the logarithmic curvature singularity. However, Us D Ws D 0 for
the � rst segment, as a straight vortex cannot induce any veloc-
ity on itself. This suggests that the underlined curvature terms in
Eq. (3) should be excluded from the determination of the error;
they were excluded in preparing Fig. 6. An approximate correc-
tion for the � rst segment error can be found by integrating the
leading term in Eq. (3) as µ ! 0; [2.1 C p2/µ ]¡1 , from µ D " to
µ D 2¼=M , the end of the � rst segment. For small p the rela-
tive error in approximating the integrand by the leading term is
¼ 2=.2M 2/, which is less than 0.008 for M > 25. Integration yields
log.2¼=M/=2.1 C p2/ ¡ log "=2.1 C p2/; the lattercancelsthe � rst
underlined term in Eq. (3). log.2¼=M/=2.1 C p2/ was added to the
binormal velocity calculatedfrom Eqs. (4) and (5). Us from the sec-
ond segment was found to be within 10% of the Biot–Savart value
at small pitch, and so its error was not analyzed. It is clear from
Fig. 6a that this procedurefor dealingwith the curvature singularity
is simple and successful.Bhagwat and Leishman6 reacheda similar
conclusion from their vortex ring comparisons.

The remaining vortex segments aligned with the control point
play a similar role as they did in case 2: there is no signi� cant
contribution to Ub from any segment, which has either ya or yb D 1.
A straightforward extension of the preceding analysis (excluding
the � rst segment!) shows 1 for case 3 to be that given by Eq. (6)
with M=2 in the square brackets replaced by M . This expression
for 1 is applicable for small p, Fig. 6a, suggesting that the aligned
segments dominate the error for case 3, as they did for case 2.
This leads to the same estimate for the order of the vortex segment
approximationat small M . At large M , however, the error tends to a
constant:nearly 0.30 for the three smallest values of p. This has the
same magnitude as the second underlined term in Eq. (3) due to the
internal structure of the vortex, which is only known in any detail
for the wake of hovering rotors, e.g., Ref. 13. On these grounds it
is premature to aim for accuracy greater than that achievable from
adding log.2¼=M /=2.1 C p2/ to the binormal velocity calculated
fromstraight-segmentequations(5). It is worthnoting,however,that
it is necessaryto have M > 80 to achieveanerror of 0.30at p D 0:05.
This value of M is larger than that used in many calculations.As the
pitch increases (Fig. 6b), the form of the error changes signi� cantly,
for reasons similar to those advanced for case 2.

Conclusions
This paper discusses the accuracyof representinga helicalvortex

by straight segments when determining the induced velocity. For
the � rst time the accuracy of this approximation was tested for a
semi-in� nite vortex of constantpitch and radius rather than a vortex
ring as has been used in numerous previous studies. It is shown that
a vortex ring is not a specialcase of a helix as the pitchdecreasesand
that several importantaspectsof the straightsegment approximation
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are only available from the comparisonwith a helix.Three test cases
were consideredover a wide rangeof the vortexpitch.Attentionwas
concentratedon the errors at the small values of the pitch typical of
wind turbine and hovering rotor wakes.

The controlpoint for case 1 was on the centerlineof the start at the
vortex. Comparisonto the exact solutionshowed the accuracyof the
straight segment representation for control points well away from
the helix to be second order in, say, the number of vortex segments
per revolutionof thehelix M . The straightsegmentapproximationis
thus of the same order as the trapezoidalrule applied to the original
Biot–Savart integral.

The other two cases do not have exact solutions, and so recourse
was made to the recent, very accurate numerical results of Refs. 11
and 12 for the velocity of the vortex itself and for points at the same
radius as the vortex. These results were veri� ed by comparison
to asymptotic expansions for small and large pitch. The control
point in the second case is displaced 180 deg from the vortex, and
the third case considered the self-induced velocity. In both these
cases attention was drawn to those vortex segments aligned with
the control point, as they do not contribute to the velocity. Such
alignment can also occur with vortex rings, but there can be at most
two aligned segments for a ring, whereas there are in� nitely many
for the helices in cases 2 and 3. Furthermore, as demonstrated in
Fig. 2, the integrand for the Biot–Savart integral is considerably
smaller for vortex rings than helices of small pitch. This observation
points to the necessity of using helical vortices rather than vortex
rings to assess the accuracy of the straight segment approximation.
Second, it suggests that the present test cases are more severe than,
say, a vortex that is expanding or contracting. Third, it leads to a
very simple error analysis that is surprisinglyuseful in determining
the form of the error. Equation (6) indicates that the error for both
cases 2 and 3 at small pitch is � rst order for small M , rising to third
order at large M . For small pitch the value of M to minimize the
error is much larger than used in most calculations.

The curvature singularity for the self-induced velocity case 3
was easily dealt with, as has been shown earlier for a vortex ring.6

With a simple correction for the � rst straight segment (attached
to the control point), the error tends to a constant at large M and
small pitch. The magnitude of this constant is comparable to the
contributionto the self-inducedvelocity that arises from the internal
structure of the vortex core. It would be premature to attempt to
improve upon the accuracy shown in Fig. 6a until more information
is available on the internal structure of tip vortices. As the pitch
increases, the error for the self-induced velocity behaves similarly
to that in case 2.
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